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Solver needs in TruchasSolver needs in Truchas
LinearLinear
•• flowflow

–– pressure projection (Poisson)pressure projection (Poisson)

–– implicit viscous treatmentimplicit viscous treatment

•• thermothermo--mechanicalmechanical

•• E&ME&M

NonlinearNonlinear
•• heatheat--transfer/phase change
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BasicsBasics

linear system:linear system:

residual and error:residual and error:

dot product:dot product:

norms:norms:
condition number:condition number:
spectral radius:spectral radius:
orthonormal:
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Linear Solver ApproachesLinear Solver Approaches
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Stationary Iterative MethodsStationary Iterative Methods
•• convergence driven by convergence driven by 

•• almost always less efficient than Krylov or multilevel almost always less efficient than Krylov or multilevel 
methodsmethods

•• can be useful as preconditioners for Krylov methodscan be useful as preconditioners for Krylov methods

1( ) max( )ρ λ λ= =iM
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Krylov Subspace MethodsKrylov Subspace Methods

no iteration matrixno iteration matrix
•• instead, idea is to minimize some measure of error instead, idea is to minimize some measure of error 

over the affine space              where      is the initial over the affine space              where      is the initial 
iterate and the iterate and the kkthth Krylov subspace isKrylov subspace is

•• original, and most welloriginal, and most well--understood, is method of understood, is method of 
conjugate gradients (CG)conjugate gradients (CG)

0 kx κ+ 0x
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Conjugate GradientsConjugate Gradients
•• developed in ’50’s as a direct methoddeveloped in ’50’s as a direct method

–– in exact arithmetic solution guaranteed in n iterationsin exact arithmetic solution guaranteed in n iterations

•• renewed interest in the ’80’s due to:renewed interest in the ’80’s due to:

–– realization that method could be viewed as iterativerealization that method could be viewed as iterative

–– preconditioningpreconditioning

–– pipelined vector computerspipelined vector computers

•• applicable to symmetric positive definite systemsapplicable to symmetric positive definite systems

•• convergence governed by                                         convergence governed by                                         rather than rather than 
byby 1( ) max( )iAρ λ λ= =

λκ
λ

−= =1 1
2 2 2
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PreconditioningPreconditioning

CG convergence improves if CG convergence improves if 
••

(left preconditioning)        (right preconditioning)(left preconditioning)        (right preconditioning)

••

•• must solve system of form                 at each iterationmust solve system of form                 at each iteration

•• though general preconditioners available (Jacobi, SSOR, though general preconditioners available (Jacobi, SSOR, 
etc.), best preconditioners use knowledge of underlying etc.), best preconditioners use knowledge of underlying 
physics/numericsphysics/numerics
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CG CostsCG Costs

most costly operations in CG algorithm are:most costly operations in CG algorithm are:
•• matrixmatrix--vector multiplication (matvec)vector multiplication (matvec)

•• preconditioning (if used)preconditioning (if used)

other operations needed:other operations needed:
•• dot products (global communication)dot products (global communication)

•• vector norms (global communication)vector norms (global communication)

•• other vector operations (addition, etc.)other vector operations (addition, etc.)
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Krylov Subspace MethodsKrylov Subspace Methods
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GMRESGMRES

generally considered “best” method for nongenerally considered “best” method for non--
Hermitian systemsHermitian systems
•• reduces to CG in symmetric casereduces to CG in symmetric case

•• storage/computation increases each iterationstorage/computation increases each iteration

–– extra vector of length n each iterationextra vector of length n each iteration

–– larger triangular solve each iterationlarger triangular solve each iteration

•• mitigated by implementing as restarted algorithmmitigated by implementing as restarted algorithm



LALA--URUR--0303--03180318

GMRES(k)GMRES(k)
restarted GMRESrestarted GMRES
•• every every kk iterations, set iterations, set xx00 = x= xkk and restartand restart

•• nice convergence properties lostnice convergence properties lost

–– convergence will be convergence will be at leastat least slowedslowed

–– iterations can stagnate and fail to converge at alliterations can stagnate and fail to converge at all

•• some strategies to mitigate negative effects of restart have beesome strategies to mitigate negative effects of restart have been n 
developeddeveloped

–– best strategy, of course, is effective preconditioningbest strategy, of course, is effective preconditioning
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Extensions of GMRESExtensions of GMRES

Flexible
GMRES

(FGMRES)

Recursive
GMRES

(GMRESR)

Variable
Preconditioning

Quasi-
GMRES

(DQGMRES)

Deflated
GMRES

Adaptive
GMRES

Dynamic
GMRES

Mitigate effects
of restart

GMRES

fixed, but sliding, subspace 
size (also allows variable 
preconditioning)

use eigenvalue 
information to adaptively 
build preconditioner

GMRES wrapped around
another Krylov solver

dynamically adjust 
subspace sizeretain approximations to some eigenvectors, add 

them to the Krylov subspace at each restart
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Truchas Solver Evolution: Truchas Solver Evolution: 
OverviewOverview

Early development:Early development:
•• JTpack77 (F77 + extensions), then JTpack90 (F90)JTpack77 (F77 + extensions), then JTpack90 (F90)

MetaMeta--stable midstable mid--life:life:
•• JTpack90 (most progress in Truchas rather than solver library)JTpack90 (most progress in Truchas rather than solver library)

Current development:Current development:
•• Ubik (a descendent of JTpack90, F95)Ubik (a descendent of JTpack90, F95)

–– independent library available via SourceForge:independent library available via SourceForge:

http://sf.net/projects/ubiksolve/http://sf.net/projects/ubiksolve/

http://sf.net/projects/ubiksolve/
http://sf.net/projects/ubiksolve/
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Truchas Solver IssuesTruchas Solver Issues
•• unstructured meshesunstructured meshes

•• nonsymmetric operatorsnonsymmetric operators

•• coefficient matrices not explicitly formed (currently)coefficient matrices not explicitly formed (currently)

•• parallel (scalable)parallel (scalable)

–– domain decompositiondomain decomposition
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Linear Solver options in Linear Solver options in 
TruchasTruchas

default solver is now FGMRES(k), but others default solver is now FGMRES(k), but others 
available:available:
•• CGCG

•• GMRES(k)GMRES(k)

•• TFQMRTFQMR

•• BiBi--CGstabCGstab

choice of Krylov subspace size (k) choice of Krylov subspace size (k) criticalcritical for for 
GMRES(k) and FGMRES(k)GMRES(k) and FGMRES(k)
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Stopping TestsStopping Tests

difficult to know when solution is “good enough”difficult to know when solution is “good enough”
••

••

••

••

••

••

 good unless 
r

A x b
b

 good, but we don't have A
r

A x b+

0

 often used, but dependent on initial guess
r
r

 useful, but increases cost of GMRES, and not dimensionless
r
x

r  not scaled, and not dimensionless, but often useful

 terrible for Krylov methods!oldx x
x
−
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Preconditioners in TruchasPreconditioners in Truchas

options available depends on the physicsoptions available depends on the physics

all currently use an ortho approximationall currently use an ortho approximation
•• Jacobi, SSORJacobi, SSOR

•• ILU(0) ILU(0) –– Incomplete LU, no fillIncomplete LU, no fill--in in 

•• 22--Level Additive SchwarzLevel Additive Schwarz
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Preconditioners in Truchas Preconditioners in Truchas 
(cont.)(cont.)

preconditioners and parallelpreconditioners and parallel
•• global global –– JacobiJacobi

–– effectiveness independent of number of procs (nprocs), but requieffectiveness independent of number of procs (nprocs), but requires res 
communicationcommunication

•• block Jacobi / additive Schwarz (1block Jacobi / additive Schwarz (1--level)level)

–– Jacobi, SSOR, LU, ILU(0) for subdomain solvesJacobi, SSOR, LU, ILU(0) for subdomain solves

–– nprocs            effectiveness nprocs            effectiveness 

•• 22--level additive Schwarz level additive Schwarz -- SSORSSOR
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22--Level Additive Schwarz Level Additive Schwarz 
PreconditioningPreconditioning

construct single coarse gridconstruct single coarse grid
•• perform subdomain solves on fine gridperform subdomain solves on fine grid

•• piecewisepiecewise--constant restriction to coarse gridconstant restriction to coarse grid

•• solve coarse grid systemsolve coarse grid system

•• piecewisepiecewise--constant prolongation and correction to constant prolongation and correction to 
fine gridfine grid

•• subdomain solves on fine gridsubdomain solves on fine grid
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22--Level Additive Schwarz Level Additive Schwarz 
Preconditioning (cont.)Preconditioning (cont.)

usually quite effectiveusually quite effective
•• much better scaling than blockmuch better scaling than block--Jacobi, since coarseJacobi, since coarse--grid grid 

correction knocks out lowcorrection knocks out low--freq. error modesfreq. error modes

flexibleflexible
•• coarse grid corresponds to number of partitions, which doesn’t coarse grid corresponds to number of partitions, which doesn’t 

necessarily have to equal number of processorsnecessarily have to equal number of processors

could be improved furthercould be improved further
•• better prolongation and restrictionbetter prolongation and restriction

•• extend to multilevelextend to multilevel
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NewtonNewton--Krylov AlgorithmKrylov Algorithm

phasephase--change algorithm requires solution of change algorithm requires solution of 
nonlinear systemnonlinear system
•• JacobianJacobian--free Newtonfree Newton--KrylovKrylov

–– basically, Newton’s method with a Krylov subspace basically, Newton’s method with a Krylov subspace 
method for the linear solvesmethod for the linear solves

1( ) 0  ( ), δ δ+= → =− = +k k k k k kF x J x F x x x x
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JacobianJacobian--Free NFree N--KK

Krylov subspace methods require Jacobian only Krylov subspace methods require Jacobian only 
for matrixfor matrix--vector productsvector products
•• approximate by firstapproximate by first--order Taylor expansionorder Taylor expansion

–– no need to form or invert actual Jacobianno need to form or invert actual Jacobian

–– perturbation factor:perturbation factor:
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Detail on JacobianDetail on Jacobian--vector vector 
product approximationproduct approximation

consider two coupled nonlinear eqns.consider two coupled nonlinear eqns.

1 1 2 2 1 2( , ) 0         ( , ) 0F x x F x x= =

1 1 1 1
1 2

11 2 1 2

2 2 2 2 2
1 2

1 2 1 2

F F F Fy y
yx x x x

F F y F Fy y
x x x x

∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂    = = ∂ ∂ ∂ ∂    
   ∂ ∂ ∂ ∂   
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Detail on JacobianDetail on Jacobian--vector vector 
product approximation (cont.)product approximation (cont.)

firstfirst--order Taylor series expansion about order Taylor series expansion about xx
1 1

1 1 2 1 2 1 1 2
1 2

2 2
2 1 2 1 2 2 1 2

1 2
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Detail on JacobianDetail on Jacobian--vector vector 
product approximation (cont.)product approximation (cont.)

firstfirst--order Taylor series expansion about order Taylor series expansion about xx

[ ]
1 1 1 2 2 1 1 2

2 1 1 2 2 2 1 2

( , ) ( , )

( , ) ( , )

F x y x y F x x

F x y x y F x x

ε ε
ε ε

ε εε
ε

+ + − 
 + −

=  
+ + −  

 

F(x y) F(x)

1 1
1 1 2 1 2 1 1 2

1 11 2 1 2
1 2

2 2 2 2
2 1 2 1 2 2 1 2 1 2

1 2 1 2

( , ) ( , )

( , ) ( , )

F FF x x y y F x x F Fx x y y
x x

F F F FF x x y y F x x y y
x x x x

ε ε

ε

ε ε

ε

∂ ∂ + + −  ∂ ∂ ∂ ∂
   ∂ ∂   ≈ = ∂ ∂ ∂ ∂ + + −   ∂ ∂ ∂ ∂   
 



LALA--URUR--0303--03180318

Recent improvementsRecent improvements

FGMRES(k) as default linear solverFGMRES(k) as default linear solver
•• rightright--preconditioningpreconditioning

•• allows variable/adaptive preconditioningallows variable/adaptive preconditioning

improved output and diagnosticsimproved output and diagnostics
•• input variable to provide periodic status updates to input variable to provide periodic status updates to ttytty

•• on failure now clear which physics had problemson failure now clear which physics had problems

•• on failure residuals dumped in GMV formaton failure residuals dumped in GMV format
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Future WorkFuture Work

LAMG for preconditioner solvesLAMG for preconditioner solves
•• not expecting huge gainsnot expecting huge gains

form full leastform full least--squares operator explicitlysquares operator explicitly
•• Mike Hall recently showed that it’s possibleMike Hall recently showed that it’s possible

•• significant performance improvement expected, due significant performance improvement expected, due 
to decreased MatVec costto decreased MatVec cost

•• allows use of LAMG on full operatorallows use of LAMG on full operator
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Future Work (cont.)Future Work (cont.)

adaptive preconditioningadaptive preconditioning
•• may not work due to typical convergence behavior of Krylov may not work due to typical convergence behavior of Krylov 

methodsmethods

adaptive GMRESadaptive GMRES
•• optimal situation is GMRES with a good enough preconditioner optimal situation is GMRES with a good enough preconditioner 

that restarting isn’t requiredthat restarting isn’t required

•• in reality restart will always be a possibilityin reality restart will always be a possibility

•• this could help mitigate problems inherent in restartingthis could help mitigate problems inherent in restarting
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Future Work (cont.)Future Work (cont.)

nonlinear solvernonlinear solver
•• study interplay between convergence of both study interplay between convergence of both 

nonlinear and linear solves and timesteppingnonlinear and linear solves and timestepping

software issuessoftware issues
•• componentizationcomponentization

–– preconditioningpreconditioning

–– NN--KK
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